Chem 160 Chapter 17: Thermodynamics: Entropy, Free Energy, and Equilibrium

1. What is a spontaneous process? What determines spontaneity? Define Gibb's free energy, enthalpy, and entropy, and the relationship between them.
2. Predict the sign of $\Delta \mathrm{S}$ in the following processes. Briefly explain your answer:
a. $3 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{O}_{3(\sqrt{2})}$
b. $\mathrm{H}_{2} \mathrm{O}_{(9)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(g)}$
c. $4 \mathrm{Al}_{(s)}+3 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{Al}_{2} \mathrm{O}_{3(s)}$
d. $\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightleftharpoons 2 \mathrm{H}^{+}{ }_{(a q)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}$
3. Calculate $\Delta \mathrm{S}^{\circ}, \Delta \mathrm{H}^{\circ}$, and $\Delta \mathrm{G}^{\circ}$ for following reactions using standard values of formation. Are products or reactants favored?
a. $\mathrm{H}_{2} \mathrm{O}_{(9)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(3)}$
b. $4 \mathrm{Al}_{(s)}+3 \mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{Al}_{2} \mathrm{O}_{3(s)}$
4. Calculate the free energy change of the following reaction at $0^{\circ} \mathrm{C}$ and $0.5 \mathrm{~atm} \mathrm{~N}_{2}, 0.7 \mathrm{~atm} \mathrm{H}_{2}$, and $1.5 \mathrm{~atm} \mathrm{NH}_{3}$. Is the reaction spontaneous under these conditions?

$$
\mathrm{N}_{2(6)}+3 \mathrm{H}_{2(6)} \rightleftharpoons 2 \mathrm{NH}_{3(2)}
$$

5. Calculate the equilibrium constant for the following reaction at $25^{\circ} \mathrm{C}$. What species is dominant in the equilibrium mixture?

$$
\mathrm{H}_{2} \mathrm{O}_{(9)} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{(2)}
$$

6. A mixture of 14.0 g of N_{2} and 3.024 g of H_{2} in a 2.00 L container is heated to $350^{\circ} \mathrm{C}$.
a. Calculate the molar concentrations of each species present in the mixture at equilibrium, assume that $\Delta \mathrm{S}^{\circ}$ and $\Delta \mathrm{H}^{\circ}$ are independent of temperature, and remember that the standard state of a gas is defined in terms of pressure.
b. Does the yield of the product increase or decrease on raising the temperature from $350{ }^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. Explain your answer using thermodynamic properties?

Solutions

1. A spontaneous process is a process that happens without intervention in a given set of conditions. In a spontaneous reaction, the formation of products is more favorable. Spontaneity is determined by the overall change in Gibb's free energy $(\Delta \mathrm{G})$, i.e. energy available to do work. A reaction is spontaneous when $\Delta \mathrm{G}^{\circ}<0$ and is nonspontaneous when $\Delta \mathrm{G}^{\circ}>0$

Gibb's free energy can be calculated from enthalpy change $(\Delta \mathrm{H})$ and entropy change ($\Delta \mathrm{S}$, randomness or degree of disorder).

$$
\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ}
$$

(Note: ${ }^{\circ}$ denotes standard conditions: $298.15 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and 1 atm$)$

$\boldsymbol{\Delta} \mathbf{H}^{\circ}$	$\boldsymbol{\Delta} \mathbf{S}^{\circ}$	$\boldsymbol{\Delta} \mathbf{G}^{\circ}$
Positive	Negative	Always positive
Positive	Positive	Positive at low T, negative at high T
Negative	Positive	Always negative
Negative	Negative	Negative at low T, positive at high T

2.

a. Negative. A process that increases the number of particles increases the entropy of the system.
b. Positive. Liquids have larger entropy than solids.
c. Negative. A process that decreases the number of particles decreases the entropy of the system.
d. Positive. A process that increases the number of particles increases the entropy of the system.
3. (Values obtained from Table B.13, Chemistry: Structures and Dynamics, $5^{\text {th }}$ edition, by James N. Spencer) a. $\quad \Delta H^{\circ}=\sum\left(\Delta H^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta H_{\text {reactants }}^{\circ} \times n_{\text {reactants }}\right)$
$=\left(-926.29 \mathrm{~kJ} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H} \mathrm{O}_{(\mathrm{g})}\right)-\left(-970.30 \mathrm{~kJ} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right)=44.01 \mathrm{~kJ}$ \rightarrow endothermic

$$
\begin{aligned}
\Delta S^{\circ} & =\sum\left(\Delta S^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta S^{\circ}{ }_{\text {reactants }} \times n_{\text {reactants }}\right) \\
& =\left(-202.23 \mathrm{~J} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)-\left(-320.57 \mathrm{~J} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H}_{2} O_{(l)}\right)=118.34 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
\Delta G^{\circ} & =\sum\left(\Delta G^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta G^{\circ}{ }_{\text {reactants }} \times n_{\text {reactants }}\right) \\
& =\left(-866.797 \mathrm{~kJ} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H}_{2} O_{(g)}\right)-\left(-875.354 \mathrm{~kJ} / \mathrm{mol} \times 1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{(l)}\right) \\
& =8.557 \mathrm{~kJ}
\end{aligned}
$$

$$
\text { or } \begin{aligned}
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =44.01 \mathrm{~kJ}-298.15 \mathrm{~K} \times 0.11834 \mathrm{~kJ}=8.727 \mathrm{~kJ} \rightarrow \\
& \text { nonspontaneous, favoring reactants. }
\end{aligned}
$$

b. $\quad \Delta H^{\circ}=\sum\left(\Delta H^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta H^{\circ}{ }_{\text {reactants }} \times n_{\text {reactants }}\right)$

$$
\begin{gathered}
=\left(-3076.0 \mathrm{~kJ} \times 2 \mathrm{Al}_{2} \mathrm{O}_{3(s)}\right)-\left(-498.340 \mathrm{~kJ} \times 3 \mathrm{O}_{2(g)}-326.4 \mathrm{~kJ} \times 4 \mathrm{Al} l_{(s)}\right) \\
=-3351.4 \mathrm{~kJ} \rightarrow \text { exothermic }
\end{gathered}
$$

$$
\begin{aligned}
\Delta S^{\circ} & =\sum\left(\Delta S^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta S_{\text {reactants }}^{\circ} \times n_{\text {reactants }}\right) \\
& =\left(-761.33 \mathrm{~J} \times 2 \mathrm{Al}_{2} O_{3(s)}\right)-\left(-116.972 \mathrm{~J} \times 3 O_{2(g)}-136.21 \mathrm{~J} \times 4 A l_{(s)}\right) \\
& =-626.9 \mathrm{~J}
\end{aligned}
$$

$$
\Delta G^{\circ}=\sum\left(\Delta G_{\text {products }}^{\circ} \times n_{\text {products }}\right)-\sum\left(\Delta G_{\text {reactants }}^{\circ} \times n_{\text {reactants }}\right)
$$

$$
=\left(-2848.9 \mathrm{~kJ} \times 2 \mathrm{Al}_{2} \mathrm{O}_{3(s)}\right)-\left(-463.462 \mathrm{~kJ} \times 3 \mathrm{O}_{2(g)}-285.7 \mathrm{~kJ} \times 4 \mathrm{Al}_{(s)}\right)
$$

$$
=-3164.6 \mathrm{~kJ}
$$

$$
\text { or } \begin{aligned}
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =3351.4 \mathrm{~kJ}-298.15 \mathrm{~K} \times-0.6269 \mathrm{~kJ}=-3164.5 \mathrm{~kJ} \rightarrow \\
& \text { spontaneous, favoring products. }
\end{aligned}
$$

4. $\Delta G^{\circ}=\sum\left(\Delta G^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta G^{\circ}{ }_{\text {reactants }} \times n_{\text {reactants }}\right)$

$$
=\left(-1081.82 k J \times 2 \mathrm{NH}_{3(g)}\right)-\left(-406.494 k J \times 3 H_{2(g)}-911.26 k J \times 1 N_{2(g)}\right)
$$

$$
=-32.898 \mathrm{~kJ}
$$

$$
Q_{P}=\frac{\left(P_{N H_{3}}\right)^{2}}{\left(P_{N_{2}}\right)^{1}\left(P_{H_{2}}\right)^{3}}=\frac{(1.5)^{2}}{(0.5)(0.7)^{3}}=13.1195
$$

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

$$
=\left(-32.898 \times 10^{3} \mathrm{~J} / \mathrm{mol}\right)+(8.314 \mathrm{~J} / \mathrm{mol}
$$

$$
\cdot K)(273.15 \mathrm{~K})(\ln 13.1195)=-30 \mathrm{~kJ}<0 \rightarrow \rightarrow \text { spontaneous. }
$$

5. From question $3 \mathrm{~b}, \Delta G^{\circ}=8.557 \mathrm{~kJ}$

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K \rightarrow \ln K=-\frac{\Delta G^{\circ}}{R T} \\
\ln K & =-\frac{8.557 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(298.15 \mathrm{~K})}=-3.452 \\
K & =e^{-3.452}=0.0316<1 \rightarrow \text { the equilibrium mixture is mostly reactants. }
\end{aligned}
$$

6. The reaction is the same as question 4: $\mathrm{N}_{2(6)}+3 \mathrm{H}_{2(6)} \rightleftharpoons 2 \mathrm{NH}_{3(\text { () }}$
a. $\quad \Delta H^{\circ}{ }_{298 K}=\sum\left(\Delta H^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta H^{\circ}{ }_{\text {reactants }} \times n_{\text {reactants }}\right)$

$$
=\left(-1171.76 k J \times 2 \mathrm{NH}_{3(s)}\right)-\left(-435.30 k J \times 3 H_{2(g)}-945.408 k J \times 1 N_{2(s)}\right)=
$$

$$
-92.212 k J
$$

$$
\begin{aligned}
\Delta S^{\circ}{ }_{298 K} & =\sum\left(\Delta S^{\circ}{ }_{\text {products }} \times n_{\text {products }}\right)-\sum\left(\Delta S_{\text {reactants }}^{\circ} \times n_{\text {reactants }}\right) \\
= & \left(-304.99 \mathrm{~J} \times 2 N H_{3(s)}\right)-\left(-98.742 \mathrm{~J} \times 3 H_{2(g)}-114.99 \mathrm{~J} \times 1 N_{2(s)}\right) \\
& =-198.764 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta G^{\circ}{ }_{573.15 \mathrm{~K}}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& \quad=(-92.212 \mathrm{~kJ})-(623.15 \mathrm{~K})(-0.198764 \mathrm{~kJ})=31.6478 \mathrm{~kJ} \\
& \qquad G^{\circ}=-R T \ln K \rightarrow \ln K=-\frac{\Delta G^{\circ}}{R T} \\
& \ln K=-\frac{31.6478 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(623.15 \mathrm{~K})}=-6.10859 \\
& \quad K=K_{P}=e^{-6.10859}=2.22369 \times 10^{-3}
\end{aligned}
$$

(Note: Since all species are gaseous, and the standard state of a gas is identified in terms of pressure, the equilibrium constant is Kp)

$$
\begin{aligned}
& K_{P}=K_{C}(R T)^{\Delta n} \rightarrow K_{C}=\frac{K_{P}}{(R T)^{\Delta n}} \\
& K_{C}=\frac{2.22369 \times 10^{-3}}{(0.08206 \times 623.15)^{2-(3+1)}}=\frac{2.22369 \times 10^{-3}}{(51.13569)^{-2}}=5.76234
\end{aligned}
$$

(Note: gas constant R used should be $0.08206 \mathrm{~atm} . \mathrm{L} / \mathrm{mol} . \mathrm{K}$, not $8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ like in $\Delta \mathrm{G}^{\circ}$.)

STEM Success Center

$$
\begin{aligned}
& {\left[N_{2}\right]=14.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{28.014 \mathrm{~g}} \times \frac{1}{2.00 \mathrm{~L}}=0.250 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=3.024 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{2.016 \mathrm{~g}} \times \frac{1}{2.00 \mathrm{~L}}=0.750 \mathrm{M}}
\end{aligned}
$$

Make an ICE table to find concentrations at equilibrium:

$$
\begin{aligned}
& \mathrm{N}_{2(2)}+3 \mathrm{H}_{2(2)} \rightleftharpoons 2 \mathrm{NH}_{3(2)} \\
& \begin{array}{cccc}
\mathrm{I} & 0.250 & 0.750 & 0 \\
\text { C } & -\mathrm{x} & -3 \mathrm{x} & +2 \mathrm{x}
\end{array} \\
& \mathrm{E} \quad 0.250-\mathrm{x} \quad 0.750-3 \mathrm{x} \quad+2 \mathrm{x} \\
& K_{C}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[N_{2}\right]^{1}\left[\mathrm{H}_{2}\right]^{3}}=\frac{(2 x)^{2}}{(0.250-x)(0.750-3 x)^{3}}=5.76234 \\
& \frac{(2 x)^{2}}{(0.250-x)[3 \times(0.250-x)]^{3}} \\
& =5.76234 \text { (factoring out } 3 \text { from (} 0.750-3 \mathrm{x} \text {)) } \\
& \frac{(2 x)^{2}}{(0.250-x)^{4}}=5.76234 \times 3^{3}=155.583 \text { (multiplying both sides by } 3^{3} \text {) } \\
& \sqrt{\frac{(2 x)^{2}}{(0.250-x)^{4}}}=\frac{2 x}{(0.250-x)^{2}}=\sqrt{155.583} \\
& =12.4733 \text { (taking squareroot both sides) } \\
& 2 x=12.4733\left(0.0625-0.500 x+x^{2}\right)=0.77958-6.23665 x+12.4733 x^{2} \\
& 12.4733 x^{2}-8.23665 x+0.77958=0 \\
& \text { (Use the quadratic formula } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text {, with } \mathrm{a}=12.4733, \mathrm{~b}=-8.23665, \mathrm{c} \\
& =0.77958) \\
& x=0.1145 \text { (accepted) or } x \\
& =0.54584 \text { (rejected, since } x>\left[\mathrm{N}_{2}\right]_{\text {initial }} \text {) } \\
& {\left[\mathrm{NH}_{3}\right]_{e q}=2 x=2 \times(0.1145)=0.229 \mathrm{M}} \\
& {\left[H_{2}\right]_{e q}=0.750-3 x=0.750-3 \times(0.1145)=7.16 \mathrm{M}} \\
& {\left[N_{2}\right]_{e q}=0.250-x=0.250-(0.1145)=0.136 M}
\end{aligned}
$$

b. The yield of ammonia decreases. Since ΔH° is negative, the reaction is releasing heat. As a result, adding more hear by raising the temperature will cause the reaction to shift to the left to dissipate the added heat and re-establish equilibrium, according to Le Chatelier's Principle. This can also be explained using $\Delta \mathrm{G}^{\circ}$

$$
\begin{aligned}
& \Delta G_{773.15 \mathrm{~K}}^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
& \quad=(-92.212 \mathrm{~kJ})-(773.15 \mathrm{~K})(-0.198764 \mathrm{~kJ})=61.462 \mathrm{~kJ} \\
& \Delta G^{\circ}=-R T \ln K \rightarrow \ln K=-\frac{\Delta G^{\circ}}{R T} \\
& \ln K_{773.15 \mathrm{~K}}=-\frac{61462 \times\left(10^{\wedge} 3 \mathrm{~J}\right) / \mathrm{mol}}{(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(773.15 \mathrm{~K})}=-9.56165 \\
& K_{773.15 \mathrm{~K}}=e^{-9.56165}=7.03765 \times 10^{-5} .
\end{aligned}
$$

Meanwhile, at $350^{\circ} \mathrm{C}, K_{623.15 \mathrm{~K}}=2.22369 \times 10^{-3}$, so at $500^{\circ} \mathrm{C}$, equilibrium constant is lower, so the equilibrium is shifted to the left, resulting in a decrease in production of NH_{3}.

